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Abstract

This isthe finalreportdocumenting the resultsof the polarizationtestingof near-planar

objectswith variousreflectanceproperties.The purpose ofthisinvestigationwas to deter-

mine the portionof the reflectedsignalwhich ispolarizedformaterialscommonly used in

space applications.Tests were conducted on severalsamples,with surfacecharacteristics

ranging from highlyreflectiveto relativelydark.
The measurements were obtainedby suspending the testobjectin a beam ofcollimated

Light.The amount oflightfallingon the sample was controlledby a circularapertureplaced

in the Lightfield.The polarizedreflectanceat variousphase angleswas then measured.

A nonlinearleastsquaresfittingprogram was used foranalysis.For the speculartest

objects,the reflectedsignalswere measured in one degreeincrements near the specular

point.Otherwise,measurements were taken every fivedegreesin phase angle.

Generally,the more diffusesurfaceshad lower polarizedreflectancesthan theirmore

specularcounterparts.The reflectedsignalsforthe more diffusesurfaceswere spread over

a largerphase angle range,whilethe signalsfrom the more specularsamples were reflected

almost entirelywithinfivedegreesof angulardeviationfrom the specularpoint.

The method used to testallthe surfacesispresented.The resultsof thisstudy will

be used to support the NASA Orbital Debris OpticalSignatureTests. These testsare

intended to help betterunderstand the reflectancepropertiesof materialsoften used in

space applications.This data willthen be used to improve the capabilitiesforidentification

and trackingof space debris.



Chapter 1

Introduction

This is the final report documenting the polarization testing of near planar objects com-

monly used in spacecraft construction. This report is organized such that the main body

contains only the most essential information; a more detailed description of each topic is

then presented in an appendix. The testing methodology, laboratory setup, data reduction

methods and results axe briefly presented in the body of this report. The appendices contain

more detailed descriptions of each of these sections. In addition, the appendices also con-

taln information on the optical testing of a piece of tether material, and albedo-scattering
information for the materials examined via the polarization experimentation.



Chapter 2

Methodology

The setup and procedure for the polarization of spacecraft materials testing was driven

by the need to obtain accurate polarization measurements for a variety of phase angles.
Measurements were taken over all possible phase angles where the reflected polarized signal

was strong enough to detect. The spectrometer recorded data over the wavelengths from

347.7 nm to 1056.6 am, although only a subset of this data was used in the final analysis.

With several objects to test, a spectrometer capable of efficiently collecting large num-
bers of measurements was required. The spectrometer used a 2 meter fiberoptic cable to

transmit the recorded signals to the processing box. This cable allowed for enough mo-

bility to take measurements at numerous phase angles. Appendix D contains additional

information about the spectrometer.
In order to measure the polarized signal reflected off the samples an adjustable polarizer

was interposed between the sensor and the test object. Only the reflected light with the

correct polarization was allowed to pass through the polarizer to the sensor. The relative

angle of the polarizer was adjustable down to tenths of a degree. More detailed information

on the polarizer can be found in Appendix D.

Figure 2.1 shows the basic setup utilized in the testing. Appendix B contains more

sketches and a discussion of the apparatus and setup.

figure 2.1

2.1 Procedure

Before the materials were tested, the experimental setup was aligned and tested. Several test

runs through the experimental process were conducted. Materials that had been evaluated

during previous tests were used as references. These tests of the set-up were conducted to
ensure that the procedure was well rehearsed, and to flush out possible sources of error.

Appendix F contains more information on the handling precautions implemented for the

experiments.
After insuring that the set-up was working properly, the objects were placed in position

and measurements were taken over all required angles in a timely manner. Dark mea-

surements were taken approximately every five measurements in order to remove the drift

present in the spectrometer's signal. This process was repeated for each test object until a

sufficient amount of data was collected.
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Figure 2.1:Basic experiment setup

2.2 Light Source

The test objects were illuminated by a 1000 Watt Quartz-Halogen source. The Ught pro-

duced was reflected onto a secondary mirror and from there onto the test object by a high

precision parabolic mirror. The parabolic mirror had a 90 inch focal length, was 16 inches
in diameter and had an angular deviation of about one half of s degree. This arrangement

worked quite well, providing enough illumination for the spectrometer to work accurately

within the range of wavelengths investigated. The direct light signal from the 1000W source

is shown in figure 2.2.

2.3 Spectrometer

The spectrometer used during these investigations was supplied by Analytical Spectral

Devices, Inc. (ASD) of Boulder Colorado. The LabSpec spectrometer was well suited

to the conditions encountered during this study. This spectrometer was able to operate

efficiently under the low light conditions encounted in the lab. The LabSpec was attached

to s PC which drove the spectrometer and stored the data.

The LabSpec's greatest liability was the background noise present in its signal. The

drift was measured during the testing and removed from the data afterwards. More detailed

information on the spectrometer can be found in Appendix D. Information on how the drift

was removed from the data can be found in Appendix G.
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2.4 Polarizer

The polarizer used in this experiment was manufactured by the Karl Lambrecht Corpora-

tion. Its orientation angle was controllable down to tenths of a desree.

2.5 Data Processing

Due to the large number of measurements necessary for each of the objects tested, the

data were processed in two steps. Initially, programs were written to perform a preliminary

analysis of the data from the objects at the laboratory site. If the results were reasonable,
the data was transferred onto a UNIX system in the data processing center. At this location,

the data were analyzed, plotted and tabulated. A detailed discussion on the data processing

can be found in appendix G.



Chapter 3

Results and Discussion

This section contains the basic results of the study and a discussion of those results. The

polarization versus phase angle plots along with the best fit plots for the materials tested

are located in Appendix H.
The amount of polarization was found by taking the ratio of the difference and the sum

of the perpendicular and horizontal polarizations. The equation used was

p = P_p - Pho,_, (3.1)
P_ + Phori,

The polarization was found to vary sinusoidally with phase angle. The equation used

to find the best non-linear fit for the data was:

y = A. sin(w.O + ¢) (3.2)

where

A - amplitude

w - frequency

¢ __ phase shift

0 = phase angle

The values found for the amplitude, frequency and phase shift of this polarization data

from this experiment, along with their deviations, are presented in Table 3.1. The amplitude

of the corresponding sine wave gives an indication of the maximum amount of polarization

possible for the material samples. The frequency shows how quickly the polarization changes

with changing phase angle. The deviation values show how good the fit is for each specific

variable.

The main errors in reducing the data seemed to be the drift of the spectrometer. The

drift rate problem is discussed in detail in Appendixes D and G, but is outlined here.

The spectrometer has a certain background noise which changes with temperature. As

the temperature of the room fluctuates the background noise drifts. This was a problem

because the drift rate over the cycle of measurements could be of the same magnitude as
the actual measurements. In addition to the drift, there was also some random noise in the

signal.

6



Material Amplitude I a

Titanium Dioxide 0.2400 0.1333

Steel 0.2275 0.0871

Composite 0.1825 0.0931

Kapton/Al side 0.4220 0.2146

Kapton/Cu side 0.2681 0.1723

InsulatingFoam 0.0327 0.0271

Mylar, smooth 0.2590 0.0721

Mylar, wrinkled 0.0360 0.0172

Aluminum 0.4227 0.0918

oJ a

0.5401

0.5263

0.2685

0.5723

0.4780

0.0730

0.1155

0.2833

0.6393

0.4256 0.8232

0.1007 0.7790

0.1826 2.403

0.2601

0.1809

2.365

0.0697 5.347 0.5926

0.1669 1.893 0.5926

0.0437 3.156 1.819

0.0049 3.025 1.266

0.2174 1.402 0.920

0.1292 2.933 1.214

Table 3.1:Polarizationamplitudes,frequenciesand phase shiftsformaterialstested

Many measurements were made of the driftrateforthe spectrometer.This driftrate

could be effectivelyremoved forthe wavelengthswith the strongersignals.Due tothe much

smallerlightstrengthat the extreme wavelengths,however,the errorsat thesewavelengths

were expected to be higherand were,consequently,not used.



Chapter 4

Conclusions

The methodology and resultsforthe polarizationtestinghave been presented.The results

obtained in thistestingaxe containedin table3.1. Generally,the surfaceswith a highly

specularnaturehad relativelylargepolarizationsignals,whilethe more diffusesurfaceshad

much lower polarizationsignals.Additionally,informationon the albedo-scatteringcharac-

teristicsofthe materialstestedduringthe polarizationtestingare containedinAppendix J.

Also,informationon the albedo-scatteringtestingperformed on a pieceof tethermaterial

iscontainedin Appendix I.
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Appendix A

Test Materials and Tasking

A.1 Materials Tested

This sectioncontainsa descriptionof the materialsthat were testedduringthisinvestiga-

tion.Included are a descriptionof the material,visualobservationabout the surface,and

any other unique informationabout a givensample.

• Titanium Dioxide

The Titanium Dioxide sample tested was approximately 12 cm X 4 cm. It was

painted upon one side of a metallic plate. Visual inspection indicated that the sample

had a large specular and a large diffuse component.

• Steel

The steelsample testedwas 302 stainlesssteeland was approximately12 cm X 4

cm in crosssectionalarea.Visualinspectionindicatedthatthe majorityofitssignal

was specular.

Composite

The composite sample tested was approximately 6 cm X 4 cm. Qualitatively its

coloring was nearly black, but a large portion of its reflected signal appeared to be

specular. Visual inspection indicated that its albedo was lower than many of the other

samples tested.

Kapton

The Kapton sample was silveron one sideand copper on the other. Visual

inspectionindicatedthat most ofitsreflectedsignalforboth sideswas specular.

Insulating Foam

The insulating foam tested was similar to styrofoam in appearance. The sample

tested was designed for insulating antennae from noise. Visual inspection indicated

that the majority ofitsreflectedsignalwas diffuse.

• Mylar with polyesternet

10



The Mylar with polyester net sample consisted of a sheet of mylar covered by a

loose polyester net. The sample was highly reflective, and most of the reflected signal

was specular in nature.

, Aluminum

The aluminum sample has a dull mirrorlike appearance. The surface is shiny and

reflects light well, but it is not polished enough to see clear images reflected on the

surface.

11



Appendix B

Experimental Setup

B.1 Experimental Setup

The purpose of this experimental setup was to simulate as closely as possible the solar radi-

ation incident upon an object in orbit about the Earth in order to estimate the reflectance
characteristics for several objects. The light used was collimated (parallel light rays) and

controlled to fall only on the object that the spectrometer was measuring. All other light

was blocked out by means of baffles, see sketches. The light source used was a 1000-watt

bulb with a constant power supply, see Appendix E. It was collimated using a parabolic

mirror placed at one end of the experimental table. The light source was placed at a dis-

tance equal to the parabolic mirror's focal length, 90 inches. Due to space constraints, it

was necessary to place the light source to the side of the table. The beam was aimed at

a 4 inch flat mirror that was used to reflect the beam into the mirror. The distance from

the bulb to the flat mirror and the flat mirror to the parabolic mirror was 13 and 77 inches

respectively.
Extraneous light was the greatest concern while running this experiment. Many mea-

sures were taken to absorb and block all light except that which fell on the test object. The

experiment was conducted in a black-painted room with all outside light sealed out. The
baffles used were carefully fit together and covered with black felt, forming a large black box

in which the light source was placed. This allowed only a simple beam of light to emerge

past the baffles. However, the parabolic mirror was not enclosed due to its distance from
the source. This was the main source of extraneous light.

The mount itself had a built in angular protractor, making angje measurements quick

and accurate. The mount stood 11 inches high and was covered with black felt. Attached to

the mount was a bracket measuring 16 inches in height from which suspended the test ob-

jects. Attached to the side of the mount was an extended arm used to hold the spectrometer

sensor.

The test objects were held by four clamps that were suspended from the bracket frame.

These clamps were attached to the four corners of the piece, which were typically rectangular

in shape, and held the piece suspended vertically in the light beam. This frame also allowed

for the pieces to be placed at various angles with respect to the light field. The measurements

for this experiment were taken with the test object located at 20 and 30 degrees with respect

to the normal of the incident light.

A polarizer was placed between the sensor and the test sample. It was affixed to the

12
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same arm as the sensor. During the testing, it was placed at orientations of zero and ninety

degrees. Additional information is included about the polarizer in Appendix E.

13
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Appendix C

Procedure

Each day beforetesting,the laboratoryequipment used in thisexperiment was setup and

aligned.The power supply and the Lightsourcewere turnedon immediatelyso they could

warm up, which helped to minimize variationsin the lightbeam. Afterthe lab was setup

and properly aligned,the testobjectwas mounted on the frame.Clamps held the pieceat

four cornersto suspend itverticallyin the lightbeam. The materialwas viewed from the

sideand visuallyadjustedto assureitwas centeredon the angularprotractorand itsnormal

lay the same plane as the incidentlightand the sensor.The sensorwas then mounted and

alignedto pointat the specularpointofthe testarticle.The polarizer'salignmentwas also

checked.

After recheckingthe mount and experimentalset-up,alllightswere extinguishedand

an appropriateintegrationtime was chosen for the set of measurements. For the more

diffusesurfacesthesemeasurements were usuallytaken in5 degreeincrements,startingat

-35 degrees and going to 110 degreeswith respectto the incidentlight.For each phase

angleone measurement was takenforthe verticaland horizontalpolarization.For the more

specularobjectswere analyzed more closelywith finerincrementsof measurements taken

near theirspecularpoint.Generallythe observationswere taken in one degreeincrements

when withintwenty degreesofthespecularpoint.Again,foreachphase anglemeasurements

at two perpendicularpolarizationswere recorded.The angularprotractorallowedaccurate

measurements of the sensorangledown to fractionsof a degree.Beforeor aftera set of

measurements was taken on a testobject,the directlightsignalwas measured.

The polarizeralso allowedthe polarizer'sangle to be recorded down to tenths of a

degree.When the measurements were completed,the sample was takendown and put back

in its Ziploc bag. The data from the spectrometer was graphically analyzed and transferred

to floppy disk for future analysis.

15



Appendix D

Equipment (Spectrometer and

Polarizer)

Spectrometer

The spectrometer used for this laboratory experiment was a LabSpec, designed and built by

Analytical Spectral Devices, Inc. (ASD) of Boulder. It has 512 channels for data sampling,

utilizing a plasma coupled photodiode array, with spectral range of 347.7 to 1056.6 nm.

It has integration times ranging from 17 milliseconds to nine minutes. The spectrometer's
noise can be removed either manually or automatically. The sensor utilizes fiber optics, and

it has a two meter cable so that the sensor can be easily moved. The sensor itself consists

of a fiber optics bundle that is roughly 0.6 mm in diameter at its terminus.

Although on the whole the spectrometer was well suited for this experiment, its recorded

signal had a significant amount of drift in its dark signal over time, partially due to tem-

perature fluctuations within the room. While this drift would be relatively insignificant

for measurements being taken under sunlight, with this laboratory experiment the amount

of noise in the signal was significant, especially when viewing the test article with long

integration times and small reflected signals.
Since the signal had a significant drift in it, the drift was subtracted from the signal

by assuming that the drift between two successive dark measurements was linear. This

provides an acceptable estimation of the signal for the wavelengths with a strong signal,
but causes the extreme wavelength calculations to be unreliable. For this reason the extreme

wavelengths have not been used in the calculations.
Procedures to allow for the careful aiming of the sensor were developed. This was

necessary due to the signal falloff at angles offset from the bore sight. This signal falloff

as a function of off-axis angle is shown in Figure D.1. However, for the diffuse objects a

significant signal comes from the off-bore sight directions. For this reason, these objects

were viewed from as great a range as possible to reduce the maximum off-axis angle.

Polarizer

The polarizer utilized in this set of experiments was provided by the Laboratory of Atmo-

spheric and Space Physics. The polarizer was the Double Glan Taylor Prism Polarizer, and
it was manufactured by the Karl Lambrecht Corporation. The angle of the polarizer was

16
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adjustable by rotating a dial in which the polarizer was set. The angle of the polarizer could

be adjusted down to tenths of degrees. A diagram of the polarizer is shown in figure 2.
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Appendix E

Light Source

All the objects were illuminated with a 1000 Watt Quartz-Halogen light source reflected

through a high precisionparabolicmirror to form a highlycollimatedlightbeam which

closelyresemblesactualsolarconditions.The lamp was a commercial GE type FEL 1000-

watt lamp having a tungsten coiled-coilfilamentenclosedin a small quartzenvelope.The

focallengthof the Parabolicmirror was 90 inches.The resultingbeam has divergences

rangingbetween 0.5and 0.7degrees,based on and limitedtothe accuracyofthe actualbeam

projectiondimension measurements. This compares wellwith the actualsun conditionsof

0.53degrees.See Appendix B where FiguresB.I and B.2 show the setupofthe lightsource.

This lamp was powered by a constantpower supplysourcewhich providess constant8

amperes ofcurrentto thelight.Figure2.2shows the raw data from a directmeasurement of

the light.This signalshows the spectrum ofthelightsourceas sensedby the spectrometer.

This can be compared withthe calibrationofanotherlightbulbofthe same model performed

by Optronic Laboratories,Inc.The spectralirradianceisgivenin microwatts_3_mat a distance

of 50 cm when the lightisoperated at 8.0 amperes. I The differencesbetween Figs. 2.2

and E.1 aremost likelydue to spectrometercharacteristicsand some varianceinthe signal

produced by each bulb.

LLetter from Optronic Lab dated 19 March, 1988
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Appendix F

Object Handling

The objects used in this investigation were all handled with care. The intent of this study

was to investigate the test objects' reflectance characteristics, so all reasonable steps were

taken to assure that the test objects' surfaces were not altered. All handling procedures
were rehearsed before the test articles were removed from their cases. As a result of the

rehearsal, the experiments proceeded smoothly without incident.

21



Appendix G

Data Processing

This sectiondescribesthe methodology used in the data processing.The followingis a

listingof the basicstepsthat were used in orderto analyzethe polarizationdata.

Data Processing Procedure

1. Take polarizationmeasurements

2. Quick analysisofresultson a PC

3. Transferdata to a UNIX system forin-depthanalysis

4. Tabulate and plotresults

G.1 Measurements

As mentioned before,the spectrometerstoresinformationforeach of its512 channelsat

each phase angle.Measurements were taken from one tofivedegreeintervalsforallpossible

angles. The variationin the angleincrement sizewas determined in order to accurately

model the reflectanceof the testobjectsand determine the polarizationestimates. The

reflectancedata was saved and quicklyanalyzedon the PC. A backup copy ofthe data was

saved on floppydisksforstorage.Finally,the data fileswere transferedto a UNIX system

forcomplete analysis,tabulationand plotting.

G.2 Test Objects

This sectiondiscussesthe data analysisfor the testobjects. The analysisconsistedof 7

testobjectsas describedin detailin appendix A. The polarizationforthe testobjectswas

calculatedusing the equation:

p = P_._p- Ph,_ (G.1)
P_,p + Pho,i_

After plottingthe polarizationresultsversusphase angle,a sinusoidalrelationshipwas

discovered.Values forthe sinusoidalvariableswere obtained by firstestimatingthe values

of itsamplitude,frequency and phase shiftfrom the testdata. Using a FORTRAN based

computer program, the estimationof the threevalueswere calculatedfairlyrapidlyusing

22



a limitedset of data. Numerical nonlinearfittingtechniqueswere used to findthe best

fitvaluesforthe amplitude,frequencyand phase shiftforthe polarizationwith respectto

phase angle. 1

G.2.1 Drift removal

A characteristic of the spectrometer that had to be considered when analyzing the data

was the drift or internal noise in the spectrometer signal. The drift produced by the spec-

trometer was influenced by the room's temperature and the spectrometer's circuitry. Other

unidentifiable factors may have also contributed to the spectrometer's drift. After every five

data readings, a "dark" signal reading was taken. This dark signal represented the ambient
or internal noise of the spectrometer at the time the data was taken. By constructing a

linear fit between each dark signal, it was possible to remove the noise from each data point.

This noise removal improved the quality of the measured reflected signal significantly. The

linear fit between dark points as well as the noise removal from the data points was carried

out by a computer program. The drift was assumed to vary linearly between dark signals

with the following equation:
D = Do + @D. t (G.2)

OD - Do- DI (G.3)
to- tl

G.2.2 Analysis of the Polarization data

A FORTRAN program was writtento analyzethe data afterthe measurements were taken

to findthe percentof polarization.This program followsthe outlineseenbelow.

polarization analysis

i. Read in the lightsignal.

2. Read in the measurements at differentphase angles.

3. Correctforthe spectrometer'sdrift.

4. Calculatethe polarizationat each angleusingequation.

5. Plot resultson the monitor and storethe data formore plottinglater.

_Press,W., Teukohky,S.,Vetterling,W., Flannery,B. 1992,NumericalReciR_qNew York,NY: Cam-

bridge UniversityPress
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Appendix H

Results

This section discusses the results of the polarization tests and shows the best fit versus real

data curves for each sample. Plotting the percent of polarization versus phase angle, there

appeared to be a sinusoidal relationship. A non-linear least squares fitting program was

used to approximate this relationship. This is discussed further in appendix G.

The plots of the fitted data are attached. The dotted line represents the real data while
the solid line is the best fit approximation. The amplitude of the fitted sine wave gives an

indication of the maximum amount of polarization possible.

Two plots are shown for the mylar test sample. This is because of the large differences

in the two examples. In the first graph, the mylar was stretch tightly in the mount to assure

that there were no wrinkles. In the next one, the mylar was not as taut and consequently

had some wrinkles in it. This greatly affected the results. In the first instance, the frequency

of the corresponding sine wave was much smaller than in the other. This is believed to be

caused by the wrinkles in the material causing the polarized light rays to hit each other at

different angles. This could cancel or increase the polarization in the reflected light signal,

causing the percent of polarization to change more rapidly with varying phase angle.
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Appendix I

Tether Results

This section contains information on the optical testing of tether material. In a general

sense, the testing conducted on the tether material was performed in a manner similar to

that which was performed in the albedo-scattering testing of the common spacecraft mate-

rials. Other than the tether being mounted in a slightly different manner, the experimental

setup was identical to the albedo-scattering testing. The tether mount is shown below.

The tether was suspended within the light field and damped at each of its ends by a

pair of alligator clamps.
Also, a slightly different range of phase angles was covered in this portion of the testing.

Since the sample itself did not block the reflected signal at phase angles greater than 135

degrees, measurements could be taken past that point. Generally measurements were taken

over phase angles ranging from as near zero degrees to as near 180 degrees as was possible.
subsection*Creation of tether pieces The original tether sample was broken and cut to

simulate how it would look if it were broken or partially damaged by a piece of debris. The

cut tether was created by partially severing the tether with a razor blade. A broken tether

sample was created by shooting a portion of the tether with a .22 pistol. Although some of

the initial shots simply bounced off the tether, one of the later ones succeeded in severing

it. The broken pieces were then analyzed within the laboratory, subsection*Results
The tether data was collected on a PC and later transferred to a Unix system where it

was analyzed in greater detail. After subtracting the dark signal from the recorded signals,

the normalized reflected signal was then least squares fit to an equation of the form:

E_ ?.

= + O)cos(e))_ -- -- _ + -(1
E

(1.1)

E

R

h -

7 --

0 -

Reflected flux

Incident flux

Kadius of Sensor

Radius of Cylinder

Height of Cylinder

Albedo

Percentage of Light Scattered Diffusely

Phase Angle (radians)

3O



Clamps

Collimated fight

Reflected Signal

. Tether

Figure 1.1: Mounting Schematic for Tether

Four different tether types were conducted on four different tether types. An undamaged

tether, a cut tether, and two cases of broken tether. The first broken tether sample was

a clean break, and the second one analyzed was a rough break - the tether material was

pulled apart in this case. Unfortunately, the specular-diffuse cylindrical model was a poor

choice for the tether sample. In the cases which involved a broken or cut tether, a large

signal was transmitted through the tether material. Below axe shown the phase functions

for the various samples which were tested.
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Appendix J

Albedo-Scattering Results

This appendix discussesthe albedo-scatteringresultsforthe common spacecraftmaterials

which were tested.A briefdescriptionoftheexperimentalsetup,theanalysisand theresults

obtained axe presentedhere. For a more complete descriptionof thistype of experiment

pleasereferto "Common SpacecraftMaterialDebris-FinalReport", Report to Lockheed.

Experimental Setup

The setup and procedure forthistestingwas drivenby the need to obtainboth scattering

and specularmeasurements for a varietyof surfacesat numerous phase angles.The setup

was alsodesignedwith the intentionofsimulatingascloselyas possiblethe conditionswhich

would be experiencedby a pieceoforbitingdebris.The physicalsetup ofthe experimental

setupforthistestwas identicalto thatofthe polarizationtesting,exceptthatthe polaxizer

was not placedin frontof the sensor- the sensorreceivedthe raw reflectedlightsignal.

Procedure

After aligning the equipment and allowing the light source and spectrometer to warm up
for a sui_cient amount of time the actual testing of the samples began. Measurements on

the more diffuse samples were generally taken over phase angles ranging from -35 degrees

to 110 degrees in 5 degree increments. For the specular samples, when near the specular

point measurements were taken in one or two degree increments. Also, as the testing

progressed the daxk current within the spectrometer was recorded approximately every five
measurements. The direct light current was also recorded either at the beginning or the

end of the test.

Generally, each sample was tested multiple times once it was aligned on the test stand.

Analysis of Data

Prior to fittingleastsquaresfitcurvesthrough the data,the dark signalwas subtracted

from the recordedsignalsand each signalwas normalizedby the recordedlightsignal.The

resultingdata was leastsquaresfitto an equationof the followingform:
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Material Albedo

Aluminum 0.754

InsulatingFoa_n .509

MLI .984

Ti02 0.818

Composite .250

Steel .6

a
0.0970 1.0

.0055 .00023

Io

0.0810 1.0

.0117 .00956

1.

a 7 _ c f

O.

.00032 .962 .0482 18.0 3.0

O. 12.0

0.0

.00088 .537 .0479 18.0 3.0

O. 12.0

Table J.l:Albedos, Gammas and Betas formaterialstested

E -----

rA ----

Rj --

7

P

b

d

C

f
0

i

Reflectedflux

Incidentflux

Radius of IlluminatedArea

Radius of Sensor

Albedo

-- Percentageof LightScatteredDiffusely

- Percentageof LightScatteredSpeculaxly

- PercentageofDirectionallyScatteredLight

-- Angle Between Normal and ReflectedLight

- Angle Between SpecularPoint and ReflectedLight

- SpecularNormalizationCoei_cient

- DirectionalScatterNormalizationCoei_cient

- ExponentialEstimate

- DirectedScatterFactor

- Phase Angle

- Test Object'sInclination

(J.2)

(J.3)

For some of the highly speculaxsamples, a directintegrationmethod was ut_li_edto

determine their_bedos.

Experimental Results

Severaltestswere performed on each piecetestedto insurethat the resultsobtained were

sufficientlyaccurate.The tableshown below listsallofthe resultsobtained.
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